Computer Science 294 Lecture 4 Notes

Daniel Raban

January 26, 2023

1 Properties of Effect and Influence

1.1 Recap: voting rules, effect, and influence

Last time, we discussed thinking of a boolean function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ as a voting rule. We had a number of examples, including the Majority, And, Or, Dictator, and Tribes functions. We also defined the influence

$$
\left.\operatorname{Inf}_{i}(f)=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X) \neq f\left(X^{\oplus i}\right)\right), \quad x^{\oplus i}=x_{1}, \ldots, x_{i-1},-x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

and the effect

$$
\operatorname{Eff}_{i}(f)=\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X)=1 \mid X_{i}=1\right)-\mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X)=1 \mid X_{i}=-1\right)=\widehat{f}(\{i\}) .
$$

To derive a Fourier representation for the influence, we introduced the derivative

$$
D_{i} f(x)=\frac{f\left(x^{(i \mapsto 1)}\right)-f\left(x^{(i \mapsto-1)}\right)}{2} .
$$

If f is a boolean function, then we saw that

$$
D_{i} f(x)= \begin{cases} \pm 1 & \text { if } i \text { is pivotal } \\ 0 & \text { otherwise }\end{cases}
$$

1.2 Fourier representations of effect and influence

From the definition,

$$
\operatorname{Inf}_{i}(f)=\mathbb{E}\left[\left(D_{i} f(X)\right)^{2}\right] .
$$

Recall that the fundamental theorem of boolean functions gives

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \chi_{S}(x), \quad \chi_{S}=\prod_{i \in S} x_{i} .
$$

Proposition 1.1. $D_{i} f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ can be expressed as

$$
D_{i} f(x) \sum_{S \subseteq[n]: S \ni i} \widehat{f}(S) \prod_{j \in S \backslash\{i\}} x_{j} .
$$

Example 1.1. If $f(x)=\frac{1}{2} x-1 x_{2}+\frac{1}{2} x_{3} x_{4}$, then $D_{1} f(x)=\frac{1}{2} x_{2}$.
Proof. D_{i} is a linear operator:

$$
D_{i}(f+g)=D_{i} f+D_{i} g, \quad D_{i}(\alpha f)=\alpha D_{i} f
$$

We can write f as a linear combination of characters, so it suffices to see what D_{i} does to a single character. In particular, we want to show

$$
D_{i} \chi_{S}= \begin{cases}\chi_{S \backslash\{i\}} & i \in S \\ 0 & i \notin S\end{cases}
$$

When $i \in S$,

$$
\begin{aligned}
D_{i} \prod_{j \in S} x_{i} & =\frac{\prod_{j \in S \backslash\{i\}} x_{j} \cdot 1-\prod_{j \in S \backslash\{i\}} x_{j} \cdot(-1)}{2} \\
& =\prod_{j \in S \backslash\{i\}} x_{j} .
\end{aligned}
$$

The definition $\operatorname{Inf}_{i}(f)=\mathbb{E}\left[\left(D_{i} f(X)\right)^{2}\right]$ makes sense for any $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$, not just boolean functions.

Lemma 1.1.

$$
\operatorname{Inf}_{i}(f)=\sum_{S \ni i} \widehat{f}(S)^{2}
$$

Proof.

$$
\operatorname{Inf}_{i}(f)=\left\langle D_{i} f, D_{i} f\right\rangle
$$

Using Parseval's identity,

$$
=\sum_{S \subseteq[n]} \widehat{D_{i} f}(S)^{2}
$$

The previous proposition tells us that if $i \notin S, \widehat{D_{i} f}(S)=\widehat{f}(S \cup\{i\})$. If S contains i, then $\widehat{D_{i} f}(S)=0$.

$$
=\sum_{T \ni i} \widehat{f}(T)^{2} .
$$

Lemma 1.2.

$$
\operatorname{Eff}_{i}(f)=\mathbb{E}\left[D_{i} f(X)\right] .
$$

Proof.

$$
\begin{aligned}
\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[D_{i} f(X)\right] & =\left\langle D_{i} f(X), 1\right\rangle \\
& =\widehat{D_{i} f}(\varnothing) \\
& =\widehat{f}(\{i\}) \\
& =\operatorname{Eff}_{i}(f) .
\end{aligned}
$$

Corollary 1.1. For any $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and any coordinate i,

$$
\operatorname{Eff}_{i}(f) \leq \operatorname{Inf}_{i}(f)
$$

Proof.

$$
\operatorname{Eff}_{i}(f)=\mathbb{E}\left[D_{i} f(X)\right]
$$

Since $D_{i} f$ equals $-1,0$, or +1 ,

$$
\begin{aligned}
& =\mathbb{E}\left[\left(D_{i} f(X)\right)^{2}\right] \\
& =\operatorname{Inf}_{i}(f) .
\end{aligned}
$$

Remark 1.1. We can think of the effect as how likely person i can change the result if they move first, whereas the influence is how likely person i can change the result if they move last. So in general, person i has more power if they move last.

Remark 1.2. We have equality if and only if f is monotone in the i-th direction.

1.3 Total influences and total effects

Definition 1.1. The total influence of a function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ is

$$
\mathbb{I}(f)=\sum_{i \in[n]} \operatorname{Inf}_{i}(f)
$$

Definition 1.2. The total effect of a function $f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}$ is

$$
\operatorname{Eff}(f)=\sum_{i \in[n]} \operatorname{Eff}_{i}(f) .
$$

Example 1.2. Since the Majority function is symmetric,

$$
\mathbb{I}\left(\operatorname{MAJ}_{n}\right)=n \operatorname{Inf}_{1}\left(\operatorname{MAJ}_{n}\right) \approx n \cdot \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{n}}=\Theta(\sqrt{n}) .
$$

Example 1.3. The Parity function is symmetric, so

$$
\mathbb{I}\left(\text { Parity }_{n}\right)=n \operatorname{Inf}_{1}(\text { Parity })=n
$$

Example 1.4.

$$
\mathbb{I}\left(\chi_{i}\right)=\sum_{j \in[n]} \operatorname{Inf}_{j}\left(\chi_{i}\right)=\operatorname{Inf}_{i}\left(\chi_{i}\right)=1 .
$$

Example 1.5. For the Tribes function, we are taking the Or of s Ands of w voters each. To find the influence of voter 1, observe that voter 1's vote is pivotal only when all other tribes vote False, but all other members of x_{1} 's tribe vote True.
$\mathbb{P}_{X_{2}, \ldots, X_{n}}\left(X_{1}\right.$ is pivotal for Tribes $)=\mathbb{P}($ all other members of 1 's Tribes vote True $)$

$$
\cdot \mathbb{P}(\text { all other Tribes vote False })
$$

$$
=\left(\frac{1}{2}\right)^{w-1} \cdot\left(1-\frac{1}{2^{w}}\right)^{s-1}
$$

Taking $s \approx \ln 2 \cdot 2^{w}$,

$$
\begin{aligned}
& \approx \frac{1}{2^{w}} \\
& =\Theta\left(\frac{\log n}{n}\right) .
\end{aligned}
$$

So the total influence of Tribes is

$$
\mathbb{I}\left(\operatorname{Tribes}_{n}\right)=\Theta(\log n)
$$

You may wonder if a voting rule which is relatively stable can give all voters low influence.

Theorem 1.1 (KKL). If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ and $\operatorname{Var}(f)=\Omega(1)$, then there exists a coordinate i with influence $\operatorname{Inf}_{i} \geq \Omega\left(\frac{\log n}{n}\right)$.

To prove this, we will need some more machinery.

1.4 Sensitivity and interpretations of total influence

Definition 1.3. The sensitivity of f at x is

$$
\operatorname{Sens}_{f}(x)=\# \text { of pivotal coordinates on } x .
$$

Lemma 1.3.

$$
\mathbb{I}(f)=\mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[\operatorname{Sens}_{f}(X)\right] .
$$

So the total influence equals the average sensitivity.

Proof.

$$
\begin{aligned}
\mathbb{I}(f) & =\sum_{i \in[n]} \operatorname{Inf}_{i}(f) \\
& =\sum_{i=1}^{n} \mathbb{P}_{X \sim\{ \pm 1\}^{n}}\left(f(X) \neq f\left(X^{\oplus i}\right)\right) \\
& =\sum_{i=1}^{n} \mathbb{E}_{X \sim\{ \pm 1\}^{n}}\left[\mathbb{1}_{\left\{f(X) \neq f\left(X^{\oplus i}\right)\right\}}\right] \\
& =\mathbb{E}_{X}\left[\sum_{i=1}^{n} \mathbb{1}_{\{f(X) \neq f(X \oplus i)\}}\right] \\
& =\mathbb{E}_{X}\left[\operatorname{Sens}_{f}(X)\right] .
\end{aligned}
$$

Remark 1.3. Recall that

$$
\operatorname{Inf}_{i}(f)=\frac{\# \text { of sensitive edges in direction } i}{2^{n-1}}
$$

so

$$
\mathbb{I}(f)=\frac{\# \text { of sensitive edges }}{2^{n-1}}
$$

Here is a third interpretation of total influence.
Lemma 1.4.

$$
\mathbb{I}(f)=\sum_{S \subseteq[n]} \widehat{f}(S)^{2} \cdot|S| .
$$

Proof.

$$
\begin{aligned}
\mathbb{I}(f) & =\sum_{i=1}^{n} \operatorname{Inf}_{i}(f) \\
& =\sum_{i=1}^{n} \sum_{S \ni i} \widehat{f}(S)^{2}
\end{aligned}
$$

Each coordinate is counted each time it shows up in a set.

$$
=\sum_{S \subseteq[n]} \widehat{f}(S)^{2} \cdot|S| .
$$

For any boolean function $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$, we know

$$
f(x)=\sum_{S \subseteq[n]} \widehat{f}(S) \cdot \prod_{i \in S} x_{i}, \quad \sum_{S \subseteq[n]} \widehat{f}(S)^{2}=1 .
$$

Define the distribution \mathscr{S}_{f} over subsets $S \subseteq[n]$, where S is sampled with probability $\widehat{f}(S)^{2}$.

Example 1.6. Recall $\operatorname{MAJ}_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{2} x_{1}+\frac{1}{2} x_{2}+\frac{1}{2} x_{3}-\frac{1}{2} x_{1} x_{2} x_{3}$. This distribution would pick $\{1\},\{2\},\{3\},\{1,2,3\}$ each with probability $1 / 4$.

This gives the interpretation

$$
\mathbb{I}(f)=\mathbb{E}_{S \sim \mathscr{S}_{f}}[|S|]=\sum_{S \subseteq[n]} \widehat{f}(S)^{2} \cdot|S| .
$$

Remark 1.4. The distribution \mathscr{S}_{f} with maximal entropy is the uniform distribution over all subsets. This corresponds to

$$
f(x)=x_{1} x_{2} \oplus x_{3} x_{4} \oplus \cdots \oplus x_{n-1} x_{n}
$$

where we are thinking of the x_{i} as elements of \mathbb{F}_{2}. Check that $\widehat{f}(S)= \pm 2^{-n / 2}$.
By Markov's inequality,

$$
\mathbb{P}_{S \sim \mathscr{S}_{f}}(|S| \geq \underbrace{\mathbb{E}[|S|]}_{\mathbb{I}(f)} \cdot c) \leq \frac{1}{c}
$$

Which boolean function maximizes $\mathbb{I}(f)$? This is the partiy function $\prod_{i} x_{i}$. Which boolean function maximizes $\operatorname{Eff}(f)$? It turns out this is the Majority function.

Proposition 1.2. Let n be odd. Among all boolean functions on n variables, MAJ_{n} is the unique maximizer of $\operatorname{Eff}(f)$.

Proof. Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ be any boolean function on n variables.

$$
\begin{aligned}
\operatorname{Eff}(f) & =\sum_{i=1}^{n} \widehat{f}(\{i\}) \\
& =\sum_{i=1}^{n} \mathbb{E}_{X}\left[f(X) X_{i}\right] \\
& =\mathbb{E}_{X}\left[f(X) \sum_{i=1}^{n} X_{i}\right] .
\end{aligned}
$$

To maximize this, we need to take $f(x)=\operatorname{sgn}\left(\sum_{i=1}^{n} x_{i}\right)$, which is the Majority function.
Next time, we will given an interpretation of influence in terms of an isoperimetric inequality on the hypercube, and we will prove Arrow's theorem.

